Autoguiding on the Macintosh

Presented by: Bob Piatek

Macintosh Astronomy Workshop I Illinois Institute of Technology

September 8, 2005

Macintosh Astronomy Workshop I Chicago, IL September 8, 2005

Bob Piatek

Presenter's Background

- President Fishcamp Engineering, a design engineering services firm.
- Education BSEE, Rochester Institute of Technology
- Passion Amateur Astronomy and digital imaging.

Autoguiding - key to success in deep sky imaging

M27 - 10 x 240 second exposures

- Very faint objects require long time exposures
- Single frame exposures from 30 seconds to greater than 10 minutes
- Requires very good tracking of the telescope to eliminate star trails

Progressively longer exposure = longer star trails

M82

Another Example

MI3

Ways to minimize star tracking errors

- Use an equatorial mount
- Good polar alignment
- PEC periodic error correction
- Manual Guiding

PEC Control

Illuminated Reticle

Polar Alignment Scope

Equatorial Mounts

- Popular German Equatorial design
- 2-axis movement
- Polar axis parallel to earth's own axis
- Polar axis driven by clock drive to compensate for earth's rotation
- Popular fork mounted GOTO SCT telescopes can track the stars but will give field rotation if not wedge mounted.

Problems still exist

- Random errors caused by lack of smoothness in drive gears or bearings or contamination by dirt and dust.
- Mechanical looseness or flaws in the mount
- Telescopes with moving mirrors can have image shift over a long time period.
- Tripod and mount flexure as the telescope weight shifts

Solution - Autoguiding

- Feedback loop that monitors the position of the mount and makes small corrections.
- Digital camera takes a picture of a 'guide' star every few seconds.
- If the position of the star changes, then a correction command is sent to the telescope's mount controller
- The process repeats for the length of the exposure.
- Corrections are made far more accurately and timely than manual guiding can achieve.

Autoguider Components

Autoguider Components

Camera

- Many different camera types suitable
 - WEB Cams
 - Dedicated Astro Cameras
 - Dedicated Guider Cameras
 - Integrating Video Cameras
- Optical path to guide star
 - Separate guide telescope
 - Off-axis guider

WebCams

- USB or FireWire interface
- Drivers available from IOExperts (Quicktime VDIG) <u>http://www.ioxperts.com</u>
- Limited to exposures < I33mS

Will limit how faint of guide star you can use

WebCam Eyepiece Adapter

- Replaces stock WebCam lens
- Some allow use of threaded light filters
 - LPR
 - IR
- Open design so dust contamination of sensor is a problem

Dedicated Astro Cameras

- Available from a number of manufacturers
 - Starlight Express
 - SBIG
 - Others
- Usually use USB interface
- Custom software drivers or dedicated application support required
- Best image quality and low-light performance

XLR8 Interview

Integrating Video Cameras

- Modified security cameras
- In-between WebCams and Dedicated Astro cams in sensitivity
- Usually have analog video outputs (requires digitizer)
- Digitizer interface boxes are available in USB and Firewire
 - Canopus, ADS, XLR8

StellacamEX - XLR8 Interview

Guide Camera Optical Path

- Separate guidescope
 - more flexible in choosing guide stars
 - subject to flexure between the main scope and guide scope
- Off-axis guider
 - Not subject to flexure problem
 - Limited choice of guidestars
 - position

Separate guide scope

- Different focal length from main scope
 - wider field of view gives more guide star choices
 - can use barlow or powermate lenses to change focal length
- Smaller aperture scope has less light gathering power

Off-axis guider

- Uses the same scope for guiding and imaging
- small prism on edge of field of view for pick up
 - need to rotate to find a good guide star
 - guide star near periphery of field

Off-axis Setup

Autoguider Components

Autoguider Components

Telescope Interface

- Mount must have interface capability
 - computer or autoguider interface port
 - motor drive
- 2 main types of interfaces:
 - Serial RS-232
 - requires USB RS-232 converter for computer
 - ST4 style relay interface
 - requires relay box interface
 - dedicated
 - on camera

Dedicated Relay Interface Box

USB Interface to computer

ST4 style interface to telescope mount

Status LEDs (N, S, VV, E)

http://www.fishcamp.com

On Camera Interface

USB Interface to computer `

ST4 style interface to telescope mount

http://www.fishcamp.com

Macintosh Astronomy Workshop I Chicago, IL September 8, 2005

Telescope Interface

Autoguider Components

Autoguider Components

Computer

- Control program running on the computer provides the 'smarts' in the system.
- Interfaces to guide camera and telescope mount
- Several programs available on the PC platform
 - CCDOPS
 - MaximDL
 - AstroArt
 - GuideDog
- Recent introductions support MacOS X
 - Equinox
 - Astro IIDC
 - Keith's Astrolmager
 - fcGuide

http://www.fishcamp.com

guider File Edit Window Help

Image Window

000

Fishcamp Engineering - fcGuide

31

0.0.0

Camera:

Guide Stats

Image Histogram

History

- Development started in summer 2004
- No solutions available on MacOS X platform at that time
- Built custom USB Relay interface box
- StellacamEX and XLR8 Interview used for image capture
- Solution a bit cumbersome with multiple boxes and interface cables

Image Capture

Calculating Guide Star Location

I) Centroid Calculation

- Fast, easy calculation
- benefits from 'aperture mask'

2) Cross Correlation

- highly noise immune
- very CPU intensive

Centroid Calculation

Magnified Star Image

- Star imaged by multiple sensor pixels
- Each pixel's intensity weighted by position of pixel in frame
- 'Center of Gravity' calculation
- Intensity of background 'sky' subtracted
- Intensity threshold
- Region of Interest aperture
- Sub-pixel precision

Centroid Calculation

No Aperture Mask

- 'Center of Gravity' calculation problems:
 - multiple star field
 - Planes / Satellites cause errors
 - noisy image with 'twinklers'
- Region of Interest mask solves most of these problems.

With Aperture Mask
Cross Correlation

$$p_1 \otimes p_2 = \sum_{w_1, w_2} \left(p_1 - p_2
ight)^2$$

pl,p2 = pixel index (2d)
wl,w2 = domain of interest

- Robust in high noise environments
- Very CPU intensive because of the total number of pixel operations involved.
- Opportunity for calculation acceleration in dedicated signal processing hardware.

Cross Correlation Example Courtesy of European Southern Observatory

- Reference image is a bright galaxy
- Compared to shifted (+5, -5) version
- Search for local minimum will provide the correct translation vector
- Sub-pixel offset obtained by fitting a parabola to the cross-correlation signal in x and y, and looking for the minimum.

Cross Correlation Example Single Star Image

 $ROI = 100 \times 100$ Search Area = +/- 20

Cross Correlation - test results

Centroid vs Cross Correlation (Results Overlay)

- Results from Quicktime movie of a 6 second image sequence. The movie was of a single star taken on a night of very poor seeing conditions.
- Centroid algorithm had (slightly) higher peak-to-peak variations in position.
- Algorithm execution time:
 - Centroid = 4mS
 - Cross Corr = 13,317mS (ROI = 100 x 100, Search Area = +/- 20)

Note: I.33GHz powerbook used in test

Noisy Star Images from WebCams

- WebCam Image at 15 fps
- High background noise is typical of WebCams
- High 'star noise' due to fast integration times and atmospheric turbulence.
- Remedy:
 - integrate longer (camera)
 - average frames (fcGuide)

Image Histogram Window

- Shows the real-time histogram for the full image frame
- \bullet Independent zoom controls on H and V
- Image statistics:
 - Max / Min
 - Mean
 - Standard Deviation
- Automatic histogram stretch (AGC) based on Mean and 2X Std. Dev.
- Manual tweak of brightness / contrast

Telescope Control

- Manual slew of telescope mount
- Guider status LED's
- Individual enables for the four guide directions
 - useful for situations like excessive backlash

History Log Window

- Spreadsheet view:
 - Time
 - Target position, Current Guide Star position
 - Filtered position
 - RMS error
 - Guide corrections
 - Data sorting

History Log Window

- Graph view
 - X Error, Y Error, RMS Error
 - Zoom
 - Annotated Axis

$\bigcirc \bigcirc \bigcirc \bigcirc$	Guide Stats	
Camera:		
c	amera: Starfish 🛟	
Exposure Time (see	onds): .2	
seconds between pi	ttures: 1	
Bi	nning: 1 X 1 🛟	

Guide Stats - Camera control panel

- Allows selection of camera to use
- User settable:
 - integration time
 - delay between pictures
 - binning modes

Raw Pixel Data:						
Guide	Star (raw) X:	538.7	0249159	1993	Y:	140.556227834574
Sky inte	nsity average	1530.	3273891	9667		
Max P	ixel Intensity	63970	.296918	2825		
Num sign	ificant pixels	32				
Region of inte	rest					
top:	100		left:	500		
bottom:	175		right:	575		

Guide Stats - Raw Image Data

- Shows:
 - Raw guide star position from Centroid Calculation
 - calculated 'sky' intensity of image background
 - Max Pixel intensity
 - Number of significant pixels used in centroid calculation
 - Region of interest mask coordinates

Reading Average:				
# readings to average:	1			
Guide Star (avg) X:	538.702491591993	Y:	140.556227834574	
				1

Guide Stats - Reading Average

- Allows user to specify the number of frames to average
- Produces a guide star position based upon this average.
- Useful in high noise conditions, high turbulence.
- Keep in mind that this slows effective capture frame rate
 guider corrections cannot occur faster than capture rate

1	Guide Star Error:			
	Target Position X:	538.955661576658	Y:	139.594690563471
	Guide Star Error X:	0.25316998466485	Y:	-0.9615372711031
	Drift Speed X:	-0.1014481710489	Y:	0.59970113532111
	Drift Acceleration X:	-0.4888573612163	Y:	0.47753195010668

Guide Stats - Guide Star Error

• Displays statistics of the guide star

- target position
- Guide star error (current target)
- drift speed / acceleration

ier rarameters.		-				
Calibrate 🗹 Au	ito Guide Ena	ble	Predictive	e Guide Enable		
Calibrate backlash pixels:	20		seconds:	5		
Calibrate movement pixels:	20		seconds:	5		
Auto-guider State: Guiding - us			sing target error guider			
Pulse Duty Cycle X:	-0.0107510473		Y:	-0.0164223346		
NORTH Slew Counts/sec X:	0		Y:	4		
WEST Slew Counts/sec X:	4		Y:	0		
seconds to wait after	correction:	0.1				
seconds /	correction:	3				
Error threshold North/South (pixels):		0.2				
Error threshold West/Ea	ast (pixels):	0.2				

- Controls:
 - 'Calibrate' starts calibration routine to characterize mount
 - 'Auto Guide Enable' used to start / stop guiding
 - 'Predictive Guide Enable' enables use of predictive guider

- Two types of guide algorithms used
 - Target error
 - Predictive Guider
- Target error guider makes corrections based solely on guide star positional error from reading to reading
- Predictive guider makes smaller, more frequent corrections based upon past history

- Target Error Guider
 - Calculates guide star error based upon target and 'averaged' position
 - One correction made at interval specified
 - At least one new camera picture needs to be taken between corrections
 - Total error * Aggressiveness is made on each correction
 - user settable 'aggressiveness'

- Predictive Guider
 - analyses past history of guider
 - attempts to make to same absolute error corrections but with smaller more frequent corrections
 - error updates still made just as before
 - should result in smoother tracking in certain cases
 - useful for conditions such as large polar misalignment

Guider Parameters:					
Calibrate 🗹 A	uto Guide Ena	ıble	Predictive	e Guide Enable	
Calibrate backlash pixels:	20		seconds:	5	
Calibrate movement pixels:	20		seconds:	5	
Auto-guider State:	Guiding - us	sing	target error g	uider	
Pulse Duty Cycle X:	-0.0107510	473	Y:	-0.0164223346	
NORTH Slew Counts/sec X:	0		Y:	4	
WEST Slew Counts/sec X:	4		Y:	0	
seconds to wait after	correction:	0.1			
seconds /	correction:	3			
Error threshold North/Sou	uth (pixels):	0.2			
Error threshold West/E	ast (pixels):	0.2	!		

- Calibration Routine Parameters:
 - Minimum number of pixels to move
 - Minimum amount of time to move

Guider Parameters:		_			
Calibrate 🗹 A	uto Guide Ena	ble	Predictive	e Guide Enable	
Calibrate backlash pixels:	20		seconds:	5	
Calibrate movement pixels:	20		seconds:	5	
Auto-guider State:	Guiding - us	ing t	target error g	uider	
Pulse Duty Cycle X:	-0.0107510	473	Y:	-0.0164223346	
NORTH Slew Counts/sec X:	0		Y:	4	
WEST Slew Counts/sec X:	4		Y:	0	
seconds to wait after	correction:	0.1			
seconds /	correction:	3			
Error threshold North/Sou	uth (pixels):	0.2			
Error threshold West/E	ast (pixels):	0.2			

- Auto Guider State
 - Shows current state in state machine
 - Error messages displayed

Guider Parameters:					
Calibrate 🗹 A	uto Guide Ena	ble	Predictive	e Guide Enable	
Calibrate backlash pixels:	20		seconds:	S	
Calibrate movement pixels:	20		seconds:	S	
Auto-guider State:	Guiding - us	ing	target error g	uider	
Pulse Duty Cycle X:	-0.0107510	473	Y:	-0.0164223346	
NORTH Slew Counts/sec X:	0		Y:	4	
WEST Slew Counts/sec X:	4		¥:	0	
seconds to wait after	correction:	0.1			
seconds /	correction:	3			
Error threshold North/Sou	uth (pixels):	0.2	!		
Error threshold West/E	ast (pixels):	0.2	!		

- Pulse Duty Cycle
 - historical average of the total guide time / idle time
 - low numbers indicitive of good inherent system tracking
 - high numbers indicative of amount of work necessary by the auto guider

Guider Parameters:					
Calibrate 🗹 A	uto Guide Ena	ıble	Predictive	e Guide Enable	
Calibrate backlash pixels:	20		seconds:	5	
Calibrate movement pixels:	20		seconds:	5	
Auto-guider State:	Guiding - us	sing t	target error g	uider	
Pulse Duty Cycle X:	-0.0107510	473	Y:	-0.0164223346	
NORTH Slew Counts/sec X:	0		Y:	4	
WEST Slew Counts/sec X:	4		Y:	0	
seconds to wait after	correction:	0.1			
seconds /	correction:	3			
Error threshold North/Sou	uth (pixels):	0.2			
Error threshold West/E	ast (pixels):	0.2			

- Slew counts / sec
 - shows the amount of star positional change in pixels / sec of mount slew
 - low number indicate very fine positional changes when slewing
 - high numbers associated with long focal length guide scopes
 - measure of the degree of axis alignment between the guide camera and telescope mount axis

Guider Parameters:					
Calibrate 🗹 A	uto Guide Ena	ble	Predictive	e Guide Enable	
Calibrate backlash pixels:	20		seconds:	5	
Calibrate movement pixels:	20		seconds:	S	
Auto-guider State:	Guiding - us	ing	target error g	uider	
Pulse Duty Cycle X:	-0.0107510	473	Y:	-0.0164223346	
NORTH Slew Counts/sec X:	0		Y:	4	
WEST Slew Counts/sec X:	4		Y:	0	
seconds to wait after	correction:	0.1			
seconds /	correction:	3			
Error threshold North/Sou	uth (pixels):	0.2			
Error threshold West/E	ast (pixels):	0.2			

- User settable guide correction parameters
 - Frequency of correction
 - Delay after correction
 - Guide star error threshold

Target Error Guider

RMS Error X = 0.63 pixels RMS Error Y = 0.78 pixels

Camera: ST402ME Guide Scope: Takahashi FS-78 with vari-extender @ 2.1x. EFL = 1323mm

Predictive Guider

RMS Error X = 0.37 pixels RMS Error Y = 0.29 pixels

Camera: ST402ME Guide Scope: Takahashi FS-78 with vari-extender @ 2.1x. EFL = 1323mm

Turn off 'Y' corrections

Turn off 'X' corrections

Re-enable 'X' corrections

Blue trace is Right Ascension drift
Non-linearity due to periodic and random errors in mount drive gears

- Disable corrections to assess system performance
 - non-linearity in Right Ascension drift shows PEC
 - Slope of drift line will show degree of polar alignment

over-correction

Backlash taken up again

- Mounts with excessive backlash can have position overshoots.
- guider will make a 'negative' correction then over compensate the opposite direction until backlash is taken up
- Guide 'enables' useful to prevent this.
- Slope of line will be same as with auto guider disabled on that axis.

- Guidescopes, and cameras add a lot of weight to the mount.
- Counterweights to balance the load will be necessary to achieve good results.

Guider Performance - aggressiveness

- High aggressiveness setting can cause the whole system to exhibit instability. Over-corrections will cause oscillations.
- Low setting will cause undue error.
- Optimal setting will allow guide star to more closely 'hug' the target position
- Determined by trial with calibration results used as a guide.

Guider Performance - Predictive Guider Results

Enable Predictive Guider -

MacOS X Software Devlopment

- fcGuide is a Cocoa Application
- Written with XCode development tools
- GCC 4.0 Compiler
- Application framework
 - widgets
 - NSString, NSData, NSView, etc
 - 'Bindings' link between View and Model
- Interface Builder

Zoom = 4 Lines of Code!

000						
*68 - *58 - *48 - *38 - *18 - *18 - -18 - -18 - -38 - -48 - -58 - -58 -	23:16:22	23:19:3	6 23	:22:52	23:26:03	Z 0 0 m 418 %
	Tine	Target X	Target Y	Raw_pos_×	Rav_pos_y	
2005-07-30	23:35:39 -0700	375.88	229.37	374.80	229.07	1 I
2005-07-30	23:35:41 -0700	375.80	229.37	374.75	229.29	

http://www.fishcamp.com

Power of 'Bindings' Slider and Field in Synch = 0 Lines of Code!

Companion Guide Camera

- 'STARFISH' dedicated guide camera
 - Use of 1/2" format CMOS sensor to allow aggressive pricing
 - small 3.2 u pixel size for good resolution
 - > 1.0 V/lux-sec (550nm) sensitivity
 - 61dB dynamic range
 - binning modes supported
 - fast frame rates with USB 2.0 interface for fast downloads
 - integration times from ImS to one hour.
 - integrated ST-4 and RS-232 interfaces
 - On board 32 bit CPU and dedicated hardware image processing functions.

STARFISH Camera Front

3 MPixel CMOS Image Sensor

Standard T-Threaded Optical Interface (C-Thread Adapter Shown)

STARFISH Camera Back

Little bigger than a 2" eyepiece

Macintosh Astronomy Workshop I Chicago, IL September 8, 2005

'STARFISH' Image Sensor

- 3 Mpixel CMOS
- Innovative design with a high fill factor pixel (effective transistors / pixel = 2.5)
- I.0 V/lux-sec (550nm) sensitivity
- Double-poly process increases capacitance in 'hold' node. Results in lower noise

CMOS vs CCD

	Micron MT9T001	Panasonic MN39482
Pixels	3 Mpixel	4Mpixel
Technology	CMOS	CCD
Optical Format	I/2"	1/2.5"
Pixel Size	3.2u	2.5u
Pixel Capture Area	5.0u	I.2u
Fill Factor	60%	20%

CPU

- 32 Bit RISC Architecture
- 64 MByte DDR SDRAM
- USB 2.0 host computer interface
- RS-232 filter wheels, mount communication
- Software downloads via USB
- Auto-guider pulse generator in hardware
- Sensor TEC cooler regulation

Image Processor

- Integrated frame grabber / buffer
- ImS resolution on exposure timing
- Frame buffer memory shared with CPU
- Hardware acceleration of image processing functions

Image Processor Hardware Acceleration

Internal Hardware acceleration is built into the camera's architecture. The following acceleration algorithms are planned

- Image histogram
- Image mean, std/dev.
- Image Demosaicing
- Image Monochrome Conversion
- Image Calibration
- Frame Averaging

Software Support

- MacOS X
 - fcGuide
 - fcCapture
 - iCCD (planned)
- Windows
 - Drivers for MaxIm DL, CCDSoft
- SDK for users desiring to write their own applications

Starfish Camera Availability

- Beta field tests begin October
- Production shipments December
- Target price = < \$900
- Announcement list signup: <u>http://www.fishcamp.com</u>

fcGuide

• Poll:

- http://www.fishcamp.com
- Gauge commercial interest in unbundled application
- Feature set:
 - camera support
 - Web-cams, astro-cams
 - telescope interface
 - serial interface
 - relay box

Summary

• fcGuide Mac Application:

- camera support
 - web-cams
 - astro-cams
- Advanced feature set
 - Guide algorithms
 - history logs, performance statistics
- 'Starfish' Astro-camera
 - Integrated guiding solution
 - versatility to be used as an imaging camera
 - hardware acceleration for image processing functions
 - commercial availability Q4 2005.